Bending tables

8.1. Bending: Open sections and channels

(a) Design resistance of cross-section

The design resistances for bending about the principal axes of the cross-section are given by:

Code ref

§6.2.5 (2)
§6.2.8 (2)

(i) For Class 1, 2 cross-sections:

img-8-1aimg-8-1b

(ii) For Class 3 cross-sections with a Class 1 or 2 flange:

img-8-1e

(iii) For other Class 3 sections

img-8-1cimg-8-1d

(iv) For Class 4 cross-sections

img-8-1fimg-8-1g

Note:

(b) Design lateral torsional buckling resistance moment

The lateral torsional buckling resistance moment b,Rd is given in the tables for a range of values of the following parameters:

Code ref

§6.3.2

The lateral torsional buckling resistance moment, b,Rd, is given by:

Code ref

§6.3.2.1 (3)

where:

Code ref

§6.3.2.3 (1)

W ypl,yfor Class 1, 2 cross-sections
W ypl,eff,yfor Class 3 cross-sections with Class 1 or 2 flanges
yel,yfor other Class 3 cross-sections, this includes Class 3 with Class 3 flanges
W yeff,yfor Class 4 cross-sections
χ LTis the reduction factor for lateral-torsional buckling. It depends on the non-dimensional slenderness img-8-1j and the imperfection factor corresponding to the appropriate buckling curve.
M cris the elastic critical moment for lateral-torsional buckling based on gross sectional properties and takes into account the following:the moment distributionthe length between lateral restraints.img-8-1r
C 1is a factor that takes into account the shape of the bending moment diagram. Values of 1 given in the tables include 1.0; 1.13; 1.35; 1.5; 1.77; 2.0 and 2.5. Elastic critical moment for lateral torsional buckling (Access Steel document SN003) [18] gives background information related to this factor. To take 1 = 1.0 is conservative.

The 1 values of 1.13, 1.35 and 1.77 correspond to common design situations, as shown below.

LoadingBending moment diagramC 1 factor
UDL, pin-ended beambending-moment-udl1.13
Central point load, pin-ended beambending-moment-centralpoint1.35
Triangular bending moment diagram, pin at one endbending-moment-triangular1.77

For linear bending moment diagrams, 1 may be determined from the following table, based on ψ, the ratio of the end moments.

End moment loadingψC 1
img-8-1-c1-end-moment-loading+ 1.001.00
+ 0.751.17
+ 0.501.36
+ 0.251.56
0.001.77
- 0.252.00
- 0.502.24
- 0.752.49
- 1.002.76

For other shapes of bending moment diagram, the factor 1 may be determined from the ratio:

M cr may be determined by using the software LTBeam, freely available from www.cticm.com

The reduction factor χLT is calculated for the 'rolled sections' case, using buckling curves "b" or "c" as appropriate and the values of eqn-6-nondim-slenderness LT,0 and β given by the National Annex. The UK National Annex gives the following values:

Code ref

§6.3.2.3 (1)

eqn-6-nondim-slenderness LT,0= 0.4
β= 0.75

The reduction factor is modified to take account of the moment distribution between the lateral restraints of members using the modification factor f:

Code ref

§6.3.2.3(2) and the UK NA

img-8-1o
img-8-1p
img-8-1q